Sunday, December 19, 2010

 HISTORY OF CALCULUS
  
               Calculus (Latin, calculus, a small stone used for counting) is a branch of mathematics focused on limits, functions, derivatives, integrals, and infinite series. This subject constitutes a major part of modern mathematics education. It has two major branches, differential calculus and integral calculus, which are related by the fundamental theorem of calculus. Calculus is the study of change, in the same way that geometry is the study of shape and algebra is the study of operations and their application to solving equations. A course in calculus is a gateway to other, more advanced courses in mathematics devoted to the study of functions and limits, broadly called mathematical analysis. Calculus has widespread applications in science, economics, and engineering and can solve many problems for which algebra alone is insufficient.   
               Historically, calculus was called "the calculus of infinitesimals", or "infinitesimal calculus". More generally, calculus (plural calculi) may refer to any method or system of calculation guided by the symbolic manipulation of expressions. Some examples of other well-known calculi are propositional calculus, variational calculus, lambda calculus, pi calculus, and join calculus
               There are three period of calculus's development, they are :

Ancient 
               The ancient period introduced some of the ideas that led to integral calculus, but does not seem to have developed these ideas in a rigorous or systematic way. Calculations of volumes and areas, one goal of integral calculus, can be found in the Egyptian Moscow papyrus (c. 1820 BC), but the formulas are mere instructions, with no indication as to method, and some of them are wrong. Some, including Morris Kline in Mathematical thought from ancient to modern times, Vol. I, suggest trial and error. From the age of Greek mathematics, Eudoxus (c. 408−355 BC) used the method of exhaustion, which prefigures the concept of the limit, to calculate areas and volumes, while Archimedes (c. 287−212 BC) developed this idea further, inventing heuristics which resemble the methods of integral calculus.The method of exhaustion was later reinvented in China by Liu Hui in the 3rd century AD in order to find the area of a circle. In the 5th century AD, Zu Chongzhi established a method which would later be called Cavalieri's principle to find the volume of a sphere.

Medieval               
               Around AD 1000, the mathematician Ibn al-Haytham (Alhacen) was the first to derive the formula for the sum of the fourth powers of an arithmetic progression, using a method that is readily generalizable to finding the formula for the sum of any higher integer powers. In the 11th century, the Chinese polymath Shen Kuo developed 'packing' equations that prefigure integration. In the 12th century, the Indian mathematician, Bhāskara II, developed an early method using infinitesimal change, a precursor of the derivative, and he stated a form of Rolle's theorem. Also in the 12th century, the Persian mathematician Sharaf al-Dīn al-Tūsī used a method similar to taking the derivative of cubic polynomials.In the 14th century, Indian mathematician Madhava of Sangamagrama, along with other mathematician-astronomers of the Kerala school of astronomy and mathematics, described special cases of Taylor series, which are treated in the text Yuktibhasa.

Modern                
               In Europe, the foundational work was a treatise due to Bonaventura Cavalieri, who argued that volumes and areas should be computed as the sums of the volumes and areas of infinitesimal thin cross-sections. The ideas were similar to Archimedes' in The Method, but this treatise was lost until the early part of the twentieth century. Cavalieri's work was not well respected since his methods can lead to erroneous results, and the infinitesimal quantities he introduced were disreputable at first. The formal study of calculus combined Cavalieri's infinitesimals with the calculus of finite differences developed in Europe at around the same time. The combination was achieved by John Wallis, Isaac Barrow, and James Gregory, the latter two proving the second fundamental theorem of calculus around 1675.  
             
 Issac Newton

               The product rule and chain rule, the notion of higher derivatives, Taylor series, and analytical functions were introduced by Isaac Newton in an idiosyncratic notation which he used to solve problems of mathematical physics. In his publications, Newton rephrased his ideas to suit the mathematical idiom of the time, replacing calculations with infinitesimals by equivalent geometrical arguments which were considered beyond reproach. He used the methods of calculus to solve the problem of planetary motion, the shape of the surface of a rotating fluid, the oblateness of the earth, the motion of a weight sliding on a cycloid, and many other problems discussed in his Principia Mathematica. In other work, he developed series expansions for functions, including fractional and irrational powers, and it was clear that he understood the principles of the Taylor series. He did not publish all these discoveries, and at this time infinitesimal methods were still considered disreputable.
Gottfried Wilhelm Leibniz
                
               Gottfried Wilhelm Leibniz was the first to publish his results on the development of calculus.These ideas were systematized into a true calculus of infinitesimals by Gottfried Wilhelm Leibniz, who was originally accused of plagiarism by Newton. He is now regarded as an independent inventor of and contributor to calculus. His contribution was to provide a clear set of rules for manipulating infinitesimal quantities, allowing the computation of second and higher derivatives, and providing the product rule and chain rule, in their differential and integral forms. Unlike Newton, Leibniz paid a lot of attention to the formalism—he often spent days determining appropriate symbols for concepts.                
               Leibniz and Newton are usually both credited with the invention of calculus. Newton was the first to apply calculus to general physics and Leibniz developed much of the notation used in calculus today. The basic insights that both Newton and Leibniz provided were the laws of differentiation and integration, second and higher derivatives, and the notion of an approximating polynomial series. By Newton's time, the fundamental theorem of calculus was known.When Newton and Leibniz first published their results, there was great controversy over which mathematician (and therefore which country) deserved credit. Newton derived his results first, but Leibniz published first. Newton claimed Leibniz stole ideas from his unpublished notes, which Newton had shared with a few members of the Royal Society. This controversy divided English-speaking mathematicians from continental mathematicians for many years, to the detriment of English mathematics. A careful examination of the papers of Leibniz and Newton shows that they arrived at their results independently, with Leibniz starting first with integration and Newton with differentiation. Today, both Newton and Leibniz are given credit for developing calculus independently. It is Leibniz, however, who gave the new discipline its name. Newton called his calculus "the science of fluxions". 
               Since the time of Leibniz and Newton, many mathematicians have contributed to the continuing development of calculus. One of the first and most complete works on finite and infinitesimal analysis was written In 1748 by Maria Gaetana Agnesi.

Maria Gaetana Agnesi

               In the 19th century, calculus was put on a much more rigorous footing by mathematicians such as Cauchy, Riemann, and Weierstrass (see (ε, δ)-definition of limit). It was also during this period that the ideas of calculus were generalized to Euclidean space and the complex plane. Lebesgue generalized the notion of the integral so that virtually any function has an integral, while Laurent Schwartz extended differentiation in much the same way.Calculus is a ubiquitous topic in most modern high schools and universities around the world.


Source:
http://www-groups.dcs.st-and.ac.uk/~history/HistTopics/The_rise_of_calculus.html
http://en.wikipedia.org/wiki/Calculus
http://www.uiowa.edu/~c22m025c/history.html